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ABSTRACT

Authors usually neglect the effect of Coulomb field in the

space of radius e'/(3kT/2) surrounding a charged particle, and

derive equations of the Fokker-Planck type from the Liouville

equation of a plasma. In tiaw papsa, the effect of the inner core

field, neglected usually, is shown to be present in an equation of

the Fokker-Planck type as an additional term which is similar to

the collision term in an equation of the Boltzmann type. It is shown

that the order of this additional term may easily be larger than those

of the friction and diffusion terms, the effect of the outer core field.

When the effect of the outer core field is larger than that of the inner

core field, the assumption of binary interaction is shown to be not

feasible. The possible nonlinear and non-Markovian behavior of a

particle is neglected.
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LIST OF MAIN SYMBOLS

A friction

B diffusion

ea electric charge of particle a

Ea macroscopic electric force on particle a

Fa, Fb , Fc one-particle distribution functions

Fab, Fac two-particle distribution functions

t

Fab Fab - Fa Fb

LD Debye length (the radius of the outer core field)

[see Eq. (2.4))

ma mass of particle a

Na total number of particle a in volume V

na Na/V

"a momentum of particle a

qa position vector of particle a

R the radius of the inner core field [see Eq. (2.5)]

S
S} time

V volume of the container

_ 1
8 n 3

0ab potential energy between two particles a and b
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Oab potential outside the outer core

OabIa potential inside the outer core

0abm potential inside the inner core

"n the average period of correlation in the outer core
field [see Eq. (3.1)]

Tm the average period of correlation in the inner core
field (see Eq.(3.2)]
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1. INTRODUCTION

We investigate the process of deriving the equation of the one-

particle distribution function of a plasma and show that it is convenient

to give the interaction term as the sum of the term of collision which

is characteristic of the Boltzmann equation and those of diffusion and

friction which are proper to the Fokker-Planck equation.

Usually authors (Refs. 1, 2 and 3) derive equations of the Fokker-

Planck type by assuming that the probability of a pair of particles

interacting with each other at distances shorter than e 2 /(3kT/2) is

negligibly small. The interaction outside this distance (and inside the

Debye length distance) is weak and of a fairly long correlation time.

Therefore, it is possible to expand the s-body function similarly to the

Mayer cluster expansion and the interaction in this outer core is con-

veniently presented by the terms of friction and of diffusion. Here we

pose the question whether it is proper to neglect the effect of the inner

core of the field.

According to the result in this paper, the effect of the inner

core field may easily be larger than those of the friction and diffusion

terms caused by the outer core field. The probability of the inner core

correlation is small. But the correlation itself is strong. Thus the

total effect may not be negligible.



With respect to the inner core field, usual methods of expanding

correlation functions similar to Mayer's cluster expansion may not be

readily applied, as the expansion may not converge. In this paper, we

present the effect of strong interaction of short correlation periods in

the inner core by "collision" and the weak interaction of long corre-

lation periods in the outer core by "friction and diffusion." As a

result, the equation of a one-body function includes the "collision"

term and "friction and diffusion" terms. Unlike the case of neutral

particles, two particles immediately before a "collision" by means of

the inner core field are correlated to each other due to the outer core

field. We note, however, that weak correlations in the outer core are

effective because of long correlation periods. These weak correlations

are not effective when we integrate them over short periods of inter-

actions in the inner core. In the short period of interaction in the

inner core, only the strong interaction developed in the inner core is

effective. Therefore we may neglect the history (or memory) formed

in the outer core, when we consider the interaction in the inner core.

This is our assumption which makes the present investigation possible.

In the future, we may consider the interaction between these two kinds

of correlations which are to be one, but now separated rather artificially.

Related to this point of the problem, we note that Tchen (Ref. 4) recently

investigated the interaction between the correlation caused by the outer



core field, and the effect of the macroscopic field caused by the macro-

scopic nonuniformity of a plasma. In this paper, these two kinds of

interactions are neglected as 3econdary effects.

II. ASSUMPTION OF BINARY CORRELATIONS

We consider a mixture of particles of different kinds and assume

that all the particles are electrically charged and that their interactions

are caused by Coulomlb electrostatic force. The distribution function of

a single particle belonging to a group will be denoted by Fa, Fbo etc.

The binary correlation function for a pair of particles will be denoted

by Fab, Fac, etc. By integrating the Liouville equation with respect

to the position and momentum coordinates (q,-) of all the particles,

except for one, we obtain

(-L + -SL . ) F. - -YI dFab g, ,
b PVadqo b b

He re
e 49b

7ab Irbj
(2.2)

and the summation I is to be extended to all the particles except for
b

the one under consideration. For the equation of Fab, we obtain
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at +Pa +~ F 3% d d'db

According to the results of Tchen's analysis (Ref. 1), we separate the

domain of / - q / in three:

Domain I:

Vh'fl0  / (2.4)

Domain II (Outer Gore):
N (2.5)

Lo > I> Rb-(sk/2)

Domain III (Inner Gore):

Here 3kT/2 is the average energy of a particle. In Domain i, we may

write for Fab simply

Fog m Fo Fb (.)

The interaction of particles a and b is effective only when the

distribution is not spatially uniform. Of course, we neglect the weak

-4-



correlation introduced by the spatial nonuniformity which was considered

by Tchen recently (Ref. 4). In Domain II, we write for Fab

Fab = FaFb- Fab'

FIac bFC+ F F + F Fb- 2 F F FC  (2.8)

Because of Eq.(2.5), it is permissible to do so, as carefully studied

by Tchen (see Ref. 1, Appendix A). In Domain III, however, any rapid

convergence of an expansion similar to Eq. (2.8) may not be expected.

Separating the domain of the integration, with respect to -b' we write

for Eq. (2.1)

ba v- -

v .a aFaj)dq (2.9)

vy .,, aa. aA

bbm

Instead of separating the domain of integration with respect to -b, it

might be convenient to separate the potential 9ab into three parts as

shown in Fig. I (see following page). The singularities at the boundaries

of domains are simple and may not cause any serious difficulties in our
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Fig'. Oabt I *ab Kia - iTi)
17. - Tbj > LD

aO.bII ab (a -7bI) ab (LD)

R- Iqa - qb1S LD

~b11n -- ab (I~a TbI) "Oab(R)

Ia- rbI> R

e2/ R

i- (_ _. bflo o
! I

I I

e/L 0 ', b

low--

R I Cb

mathematical treatment. Concerning Eq. (2.9), we may define the

macroscopic electric field by

00b "4E. Fb d~ d' (2.10)

We write for Eq. (2.9)

-4'PC +. F.. - F

" v JP " z.l



Our further task is to obtain F ab in Domain II and Fab in

Domain III. The terms on the right-hand side of Eq. (2.3) may be

neglected if we assume that the nonlinear correlation is negligibly

small. After neglecting these terms, there remains no term of

integration with respect to qb and -b . Therefore, it is possible to

write Eq. (2.3), separately in Domain II and III, as follows:

In Domain II,

'P .i ~ L -+- ab+F'

dctra d$ 4"0 MO 34 d, d 90 d'b d Ob'a +F O

By considering Eq. (2.1), we substitute

__ f dipb ciPb

ba

for

in the above equation. We neglect the nonlinear terms which appear in

the equation after the substitution, and also -O--- + 46 dF
fdqa" dpAr ddb J2r

which, according to Tchen's study, is not significant so far as

Domain II is concerned. Therefore, for the equation to which Fab

is subject, we obtain

+dq, + Ob d a
t Ma Jq Mb Qb (.oZ-- a Fb F+ _d& . ~ F, 2.2

dqO aa qb dPb
Equation (2.12) is valid only in Domain II.
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In Domain III, neglecting the nonlinear terms in Eq.(2.3), we

have

TF WT -Pq Mb d I4-

d96b__ (2.13)

III. CORRELATIONS

In Domain II, the average period of correlations is long, although

the correlations are weak.

Lo
(3kr/m)W- (3.1)

gives the order of the average period. In Domain III, the average period

of correlations is short although the correlations are strong.

R= (3.2)
(3kT/m)

We assume that the ratio of two periods is sufficiently larger than unity.

D= . >1 (3.3)
r-8k



Since the changes of variables in Domain II during the period r E . are

assumed to be negligibly small, we obtain

+N~d4a 3 - Ea dNb fda _

b r Ia  b(3.4)

+ d Fa Nbk ddib d,
4 bV rqa dPa

by averaging each term of Eq.(2.ll) over r, . Here, dashed

characters denote respectively the averages of the original functions

over rT along the trajectories of concerned particles:

r

f F (t +s)ds
0

(i) The last term of the right-hand side of Eq. (3.4) may be

calculated by means of Eq. (2.3). Here we simply mention the elaborate

method by Kirkwood and Ross (Ref. 5). They consider a phase space

transformation function K( 2 ). Substituting

F(3)P; t+ suJ/Kh J(q,p/q p's s ) FQ(q" p'; t ) dQ'dp'

for Fab in Eq.(2.3), we obtain the equation of K ( ?) . We do not repeat

their investigation in detail. However, we must remember that the

necessary assumptions by which the last term of Eq. (3.4) is reduced

to the collision integral are not precisely given in our case. T h e
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correlation developed in Domain II does exist before the two particles

begin to interact in Domain III. As mentioned previously, however, we

assume that the correlation in Domain II is weak and that its integral

over rT is not significant as compared with the integral of the strong

correlation newly developed in Domain III. This collision term may be

calculated by assuming that the potential between two particles is the

inner core potential as given in Fig. 1. The collision term thus obtained

is denoted by (dt )coII

(odR ,;,' Oo g; (3.5)
at ~ ~ ~ -& dO011 d- - d, q0 " '

(ii) By averaging each term of Eq.(2.12), over rF , we obtain

(d + P db) Fob'

(3.6)

dqu dp3 b a ~ -

Here, of course, we assume that in Domain II, the changes of functions

in T are small. By integrating the equation along the trajectories

of two particles, we obtain

a' (t)= -'[ "a +..._. F.._.O ] ds (3.7)

o a F b

-10-



The integrand is considered to be a function of a(S), -qb(s).

q0 (s)= qa,(t)- (t-s)PO/m

qb(s)= qb(t) - (t -s)pb /mb

Since a F
- + ,Fab is neglected in Domain I, Pa and

e q dp"-0  dqb aPb

Pb are considered invariants. Substituting Eq. (3.7), we obtain for the

first term of the right-hand side of Eq. (3.4),

~Nb, ( (99ab(t). a af t dOab(s Pa F0 d] dqb d
V7. rdqa dga d-pa bdT 1 OPb

Nb V . ci .s -"L d

Here a@b (s is neglected in the non-Markovian approximation.

Defining A and B by

-A b,- . F. o- ds]dd o

Lb O a~ ) t] O b *F. Fds dqb dpb (3.9)

the interaction in Domain II is represented by

.AI+ L" _ (3.10)a8op0 '

-Il-



Sumnmarizing the above results, the equation for Fa is given by

+ - d+ 0 L) 0(~$~~qa a0(.11

A F + d2

dt 1001. dPO 0  d40 dira

In order to calculdate A. and 31, Tchen uses the Fourier integral

representation of aband F '95ab ab

SO zeb./ -W pi/*Q~r

Fab(Q"eaJ(3.1Z)

Taking Maxwellian distributions for Fa and Fb in the integrands,

he investigated A and B in detail.

IV. EVALUATION OF INTERACTIONS

According to Eq. (3.8), we see that the order of A is

Ot~j 2 __L(4.1)

Considering Eq. (3.11) as the basic equation, we may now examine the

relative effects of the terms on the right-hand side. That of B is

-12-



)4 nL 
4

0 LB D (4.2)

Here Z is the average speed of particles

F - 3kT/m)1 r (4.3)

and we may take for the order of operator al/4 -

03k1 1' (4.4)

Considering

* kT
LD 4irfl* 2  (4.5)

we obtain for the orders of dZaan d 8F

oLZ A fa - 0] =I2,r "m5 -F-L (4.6)

We may estimate the order of (d/dt)CO011 by

__F 
e en 2

0[ d= 7rR- n fl
at3 X (12r)'V mV2L 0

3  (4.7)

Making ratios of these values, we have

[AF 1 d22 47rn LD(4.8)

We interpret Eq. (4.8) as follows;

By putting

a =~-~k(4.9)

-13-



we have

(47) 1 e n W (4.10)

From Eqs. (2.5) and (4.5), we have

RD . 4r S/ '" ni (4.11)

It is easily shown that

LD 4 7r( LD) 3  (4.12)

8 L 0  .4r X (4.13)

or

lgt=log (6 7)+4 2 log (L~- 41a

If we take LD/8 _ I, it is clear that S/R >1 . When LD/A 1

we obtain from Eq. (4.10)

(47r)% n ( r) (4.14)

or

Iogon = 3 IogoT "4- 5.04 (4.14a)

where n is in cm- 3 and T in 0 K. Equation (4.14a) is plotted in
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Fig. 2. If LD, is extremely large, we may neglect completely the

effect of microscopic encounters and the equation is of the Vlasv type.

When LD/18 is fairly larger than unity, the interaction by the outer

core may be neglected and the equation is of the Boltzmann type. As

LD/8 decreases, the friction and diffusion terms appear as subsidiary

ones. Near L/8 = I , the effect of the inner core (collision) and the

effect of the outer core (friction and diffusion) may be comparable to

each other. As L/D8 decreases further, the collision term may be

negligible and the equation is of the Fokker-Planck type. At the same

time, the assumption of binary encounters becomes unplausible. In

other words, when the equation of the Fokker-Planck type is plausible.

9

6-

o 09

0 X

2-

0
15 16 17 I8 19 20

fogio n

Fig. 2 n Is Given By Unit cm - 3 and T by OK In The Domain
Above The Line, LD/8 > 1
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encounters are to be multiple (Ref. 3). In Fig. 3, these various domains

are indicated schematically.

/

Iog'oT

Fig . 3 log 10 T -log I n Space I a Divided By Lines, LD/8 mconstant,

In Four Domains.

The Equation Is:

(1) Of The Vlasov Type When LD/8 it Extremely Large;

(2) Of The Boltzran Type, an LD/8 Dec reasest;

(3) Of The Boltzmann Type + Fokker-Planck Type
(Binary), When LD/% Approaches To Unity;

(4) Of The Fokker-Planck Type (Multiple), As

ID/S Decreases Further.

In Domain (4), Encounters Are Multiple (More Than Binary).

V. CONCLUDING REMARKS

By the order analysis above, we see that the friction and diffusion

terms due to binary interactions have validity only as corrections to the

collision term of the Boltzmann equation. Within the limits of binary

interaction these Fokker-Planck terms by themselves appear to have no

region of validity. When the collision term of the Boltzmann type

becomes negligible compared to the long-range interactions, we must

consider multiple (more than binary) interactions.
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In calculating &" 11. (3.5), a particle which contributes
to this term is to have a velocity satisfying the condition that the
nearest distance between these colliding particles is shorter than R.
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